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The classical Leray-Schauder fixed point theorem and its diverse versions [1, 2, 3]
in infinite-dimensional both Banach and Frechet spaces have many very important ap-
plications in modern applied analysis. Our report is devoted to the operator equation
Ax = f(x), where A : E1 → E2 is some closed surjective linear operator from Banach
space E1 into Banach space E2, defined on a domain D(A) ⊂ E1, and f : E1 → E2 is
some, in general, nonlinear continuous mapping, whose domain D(f) ⊂ D(A)∩Sr(0),
with Sr(0) ⊂ E1 being the sphere of radius r ∈ R+ centered at zero. Concerning the
mapping f : E1 → E2 we will assume that it is â -compact. Assume that a mapping
f : E1 → E2 satisfies the following conditions: 1) the domain D(f) = D(A) ∩ Sr(0);
2) the mapping f : D(f) → E2 is A - compact; 3) there holds a bounded constant
kf > 0, such that sup

y∈Sr(0)

1
r ‖f(y)‖2 := kf ,

where a linear operator A : E1 → E2 is taken closed and surjective with the do-
main D(A) ⊂ E1. The domain D(A) is not necessary to be dense in E1. Let now
Ẽ1 := E1/Ker A and p1 : E1 → Ẽ1 be the corresponding projection. The indu-
ced mapping Ã : Ẽ1 → E2 with the domain D(Ã) := p1(D(A)) is defined as usual,
that is for any x ∈ D(A), p1(x) ∈ D(Ã) there holds Ã (p1(x)) := A x. It is a well
known fact that the mapping Ã : Ẽ1 → E2 is invertible and its norm is calcula-
ted as k−1A := sup

‖y‖2=1

∥∥∥Ã−1(y)∥∥∥ = sup
‖y‖2=1

inf
x∈E1

{‖x‖1 : Ax = y} , where we denoted by

‖·‖1 and ‖·‖2 the corresponding norms in spaces E1 and E2. Then the following
characteristic theorem holds.

Theorem. Assume that the dimension dimKerA ­ 1 , and the condition kf <
kA holds; then the quation Ax = f(x), possesses on the sphere Sr(0) ⊂ E1 the
nonempty solution set N(A; f) ⊂ E1, whose topological dimension dimN(A; f) ­
dimKer A−1.
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